Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation.

Identifieur interne : 000788 ( Main/Exploration ); précédent : 000787; suivant : 000789

Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation.

Auteurs : Xing-Huang Gao [États-Unis] ; Suparna Qanungo [États-Unis] ; Harish V. Pai [États-Unis] ; David W. Starke [États-Unis] ; Kelly M. Steller [États-Unis] ; Hisashi Fujioka [États-Unis] ; Edward J. Lesnefsky [États-Unis] ; Janos Kerner [États-Unis] ; Mariana G. Rosca [États-Unis] ; Charles L. Hoppel [États-Unis] ; John J. Mieyal [États-Unis]

Source :

RBID : pubmed:25126518

Descripteurs français

English descriptors

Abstract

Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1) and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS). In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50-60% in the IMS, but Grx2 is increased by 1.4-2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron-sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron-sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ.

DOI: 10.1016/j.redox.2013.10.010
PubMed: 25126518
PubMed Central: PMC4127417


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation.</title>
<author>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qanungo, Suparna" sort="Qanungo, Suparna" uniqKey="Qanungo S" first="Suparna" last="Qanungo">Suparna Qanungo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pai, Harish V" sort="Pai, Harish V" uniqKey="Pai H" first="Harish V" last="Pai">Harish V. Pai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steller, Kelly M" sort="Steller, Kelly M" uniqKey="Steller K" first="Kelly M" last="Steller">Kelly M. Steller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Hisashi" sort="Fujioka, Hisashi" uniqKey="Fujioka H" first="Hisashi" last="Fujioka">Hisashi Fujioka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lesnefsky, Edward J" sort="Lesnefsky, Edward J" uniqKey="Lesnefsky E" first="Edward J" last="Lesnefsky">Edward J. Lesnefsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kerner, Janos" sort="Kerner, Janos" uniqKey="Kerner J" first="Janos" last="Kerner">Janos Kerner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosca, Mariana G" sort="Rosca, Mariana G" uniqKey="Rosca M" first="Mariana G" last="Rosca">Mariana G. Rosca</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoppel, Charles L" sort="Hoppel, Charles L" uniqKey="Hoppel C" first="Charles L" last="Hoppel">Charles L. Hoppel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:25126518</idno>
<idno type="pmid">25126518</idno>
<idno type="doi">10.1016/j.redox.2013.10.010</idno>
<idno type="pmc">PMC4127417</idno>
<idno type="wicri:Area/Main/Corpus">000776</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000776</idno>
<idno type="wicri:Area/Main/Curation">000776</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000776</idno>
<idno type="wicri:Area/Main/Exploration">000776</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation.</title>
<author>
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qanungo, Suparna" sort="Qanungo, Suparna" uniqKey="Qanungo S" first="Suparna" last="Qanungo">Suparna Qanungo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pai, Harish V" sort="Pai, Harish V" uniqKey="Pai H" first="Harish V" last="Pai">Harish V. Pai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steller, Kelly M" sort="Steller, Kelly M" uniqKey="Steller K" first="Kelly M" last="Steller">Kelly M. Steller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Hisashi" sort="Fujioka, Hisashi" uniqKey="Fujioka H" first="Hisashi" last="Fujioka">Hisashi Fujioka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lesnefsky, Edward J" sort="Lesnefsky, Edward J" uniqKey="Lesnefsky E" first="Edward J" last="Lesnefsky">Edward J. Lesnefsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kerner, Janos" sort="Kerner, Janos" uniqKey="Kerner J" first="Janos" last="Kerner">Janos Kerner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosca, Mariana G" sort="Rosca, Mariana G" uniqKey="Rosca M" first="Mariana G" last="Rosca">Mariana G. Rosca</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoppel, Charles L" sort="Hoppel, Charles L" uniqKey="Hoppel C" first="Charles L" last="Hoppel">Charles L. Hoppel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Mitochondria, Heart (enzymology)</term>
<term>Mitochondria, Heart (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Rats, Inbred F344 (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Mitochondries du myocarde (enzymologie)</term>
<term>Mitochondries du myocarde (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Rats de lignée F344 (MeSH)</term>
<term>Vieillissement (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries du myocarde</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria, Heart</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Aging</term>
<term>Mitochondria, Heart</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Mitochondries du myocarde</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Oxidation-Reduction</term>
<term>Rats</term>
<term>Rats, Inbred F344</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Oxydoréduction</term>
<term>Rats</term>
<term>Rats de lignée F344</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1) and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS). In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50-60% in the IMS, but Grx2 is increased by 1.4-2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron-sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron-sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25126518</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>586-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2013.10.010</ELocationID>
<Abstract>
<AbstractText>Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1) and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS). In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50-60% in the IMS, but Grx2 is increased by 1.4-2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron-sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron-sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xing-Huang</ForeName>
<Initials>XH</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qanungo</LastName>
<ForeName>Suparna</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pai</LastName>
<ForeName>Harish V</ForeName>
<Initials>HV</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Starke</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steller</LastName>
<ForeName>Kelly M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fujioka</LastName>
<ForeName>Hisashi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lesnefsky</LastName>
<ForeName>Edward J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kerner</LastName>
<ForeName>Janos</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosca</LastName>
<ForeName>Mariana G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoppel</LastName>
<ForeName>Charles L</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Center for Mitochondrial Disease, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Department of Medicine, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Division of Cardiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA ; Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AG015885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>I01 BX000290</GrantID>
<Acronym>BX</Acronym>
<Agency>BLRD VA</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AG024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01AG15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008929" MajorTopicYN="N">Mitochondria, Heart</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011916" MajorTopicYN="N">Rats, Inbred F344</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aging</Keyword>
<Keyword MajorTopicYN="N">Cys-SSG, l-cysteine–glutathione mixed disulfide</Keyword>
<Keyword MajorTopicYN="N">DT, sodium dithionite</Keyword>
<Keyword MajorTopicYN="N">GSH, reduced glutathione</Keyword>
<Keyword MajorTopicYN="N">GSSG, glutathione disulfide</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Glutathionylation</Keyword>
<Keyword MajorTopicYN="N">Grx, glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">IFM, Heart interfibrillar mitochondria</Keyword>
<Keyword MajorTopicYN="N">Iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="N">Mitochondria</Keyword>
<Keyword MajorTopicYN="N">Mn-TMPyP, Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin</Keyword>
<Keyword MajorTopicYN="N">Reactive oxygen species (ROS)</Keyword>
<Keyword MajorTopicYN="N">Redox regulation</Keyword>
<Keyword MajorTopicYN="N">SSM, heart subsarcolemmal mitochondria</Keyword>
<Keyword MajorTopicYN="N">t-Bid, caspase-8-cleaved human BID</Keyword>
<Keyword MajorTopicYN="N">tetratosylate, hydroxide</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25126518</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2013.10.010</ArticleId>
<ArticleId IdType="pii">S2213-2317(13)00079-7</ArticleId>
<ArticleId IdType="pmc">PMC4127417</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Sep;11(9):2083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19290777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2011 Jun 6;88(23-24):1026-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):2108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med Genet. 2001 Spring;106(1):62-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11579426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2001 Nov;3(11):E255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11715037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 May 12;48(18):3813-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19292455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(3):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2005 Mar;19(3):419-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1986 Jul 15;237(2):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3026324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2009 Jun;46(6):1008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1987 Jul;80(1):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3110216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Aug 28;281(5381):1309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9721092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Apr 18;45(15):4785-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16605247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Aug 1;381(Pt 3):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15139849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1995 Jul;77(1):174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 9;408(6809):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Jul 3;5(231):ra47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22763339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Apr 5;262(10):4724-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3031031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2001 Jan;33(1):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 1996 Aug;28(2):331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8800106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Oct 15;51(8):1501-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21810465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Dec;6(12):971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2004 Sep;4(5-6):377-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16120399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(2):2368-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47961-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 May;4(5):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 30;312(5782):1882-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Dec 15;420(2):287-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Toxicol. 2010 Jun;10(2):108-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20229123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jun 1;414(1):59-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12745255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):13044-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jun 8;46(5):584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Sep 30;1606(1-3):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1968 Nov 10;243(21):5753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4972775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49064-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2012 Jan;47(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22100642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 25;254(10):4164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">571436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Oct 20;19(12):1362-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22901002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Feb;1793(2):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Nov 1;35(9):1064-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14572609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jun 15;12(12):1339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19938943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2010 Nov 15;19(22):4529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20829229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 19;278(38):36027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1951 Nov;193(1):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14907713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 May 15;44(10):1795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jun 1;16(11):1323-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22146081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):543-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Dec 10;252(23):8731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">925018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1955 Nov;217(1):409-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13271404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Nov 1;13(9):1341-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Res. 2012 Sep;160(3):207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22698829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 3;285(49):38641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2009 Dec 24;16(12):1299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 25;268(30):22369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Dec 15;372(2):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Gao, Xing Huang" sort="Gao, Xing Huang" uniqKey="Gao X" first="Xing-Huang" last="Gao">Xing-Huang Gao</name>
</region>
<name sortKey="Fujioka, Hisashi" sort="Fujioka, Hisashi" uniqKey="Fujioka H" first="Hisashi" last="Fujioka">Hisashi Fujioka</name>
<name sortKey="Hoppel, Charles L" sort="Hoppel, Charles L" uniqKey="Hoppel C" first="Charles L" last="Hoppel">Charles L. Hoppel</name>
<name sortKey="Kerner, Janos" sort="Kerner, Janos" uniqKey="Kerner J" first="Janos" last="Kerner">Janos Kerner</name>
<name sortKey="Lesnefsky, Edward J" sort="Lesnefsky, Edward J" uniqKey="Lesnefsky E" first="Edward J" last="Lesnefsky">Edward J. Lesnefsky</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Pai, Harish V" sort="Pai, Harish V" uniqKey="Pai H" first="Harish V" last="Pai">Harish V. Pai</name>
<name sortKey="Qanungo, Suparna" sort="Qanungo, Suparna" uniqKey="Qanungo S" first="Suparna" last="Qanungo">Suparna Qanungo</name>
<name sortKey="Rosca, Mariana G" sort="Rosca, Mariana G" uniqKey="Rosca M" first="Mariana G" last="Rosca">Mariana G. Rosca</name>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
<name sortKey="Steller, Kelly M" sort="Steller, Kelly M" uniqKey="Steller K" first="Kelly M" last="Steller">Kelly M. Steller</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000788 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000788 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25126518
   |texte=   Aging-dependent changes in rat heart mitochondrial glutaredoxins--Implications for redox regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25126518" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020